11.12.2019
Diese Webseite verwendet Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung dieser zu. Über den Button können Sie diesen Hinweis schließen.
Erklärung zum Datenschutz

03.06.2019

Innovation & Forschung

Energie smart speichern – mit Zink und Luft

Energiespeicher sind unerlässlich, wenn die Energiewende in Deutschland und die erneuerbaren Energien vorangebracht werden sollen. Am besten wäre es natürlich, sie nachhaltig und ressourcenschonend zu konzipieren. Einen neuen Ansatz haben dazu jetzt die FH Münster und die Unternehmen EMG Automation und energy environment economics 3e vorgelegt: Ihr Speicher funktioniert allein mit Zink und Luft.

Energie smart speichern – mit Zink und Luft zoom
Sie arbeiteten zusammen am Zink-Luft-Speicher (v.l.): Ludwig Horsthemke, Andre Löchte, Prof. Dr. Peter Glösekötter (alle FH Münster), Markus Kunkel (3e), Uwe Jaschke, Nicol Otterbach und Anno Jordan (alle EMG Automation).

„Einer der Vorteile ist, dass Zink weltweit sehr verbreitet ist und sogar in Deutschland in der Erdkruste vorkommt“, sagt Prof. Dr. Peter Glösekötter vom Fachbereich Elektrotechnik und Informatik, der das Projekt mit seinem Team federführend betreute. Gerade im Hinblick auf Ressourcenknappheit ist dies eine gute Nachricht. Edelmetalle und seltene Erden, die in vielen gängigen Energiespeichern verbaut sind, könnten mit der neuen Technologie eingespart werden. „Außerdem lässt sich Zink auch nach dem Einsatz im Speicher sehr gut weiterverwenden, unsere Zellen sind zu 98 Prozent recycelfähig“, so Glösekötter. Und der günstige Preis kann sich ebenfalls sehen lassen, wie Andre Löchte, wissenschaftlicher Mitarbeiter in Glösekötters Labor, ergänzt: „An Materialkosten fallen ungefähr 2 Euro pro Zelle an – davon benötigen wir zehn, um eine Kilowattstunde zu speichern.“

Anzeige

Und so funktioniert der Speicher

Zink reagiert mit Sauerstoff und setzt dabei Energie frei. Der Zink befindet sich in der Zelle, der Sauerstoff in der Luft gelangt durch die durchlässige Elektrode hinein. Dass sich lediglich ein Reaktionspartner in der Zelle befindet, hat den Vorteil, dass im Vergleich zum gängigen Lithium-Ionen-Akkumulator höhere Energiedichten möglich sind. Damit man die Zelle aber wieder aufladen kann, ist ein wässriger alkalischer Elektrolyt und eine bifunktionale Gasdiffusionselektrode oder eine separate Ladeelektrode nötig, die eine Oxidation der entstehenden Hydroxidionen ermöglicht. Ist der Kapazitätsverlust zu groß, die Zelle also für den Speichergebrauch defekt – den Berechnungen der Wissenschaftler nach ist das ungefähr nach etwa zehn Jahren der Fall –, dann besteht die Möglichkeit, das verwendete Elektrolyt Kalilauge weiterzuverkaufen. Denn die Industrie kann sie zum Neutralisieren chemischer Abwässer, die häufig sauer sind, einsetzen.

„Das Potenzial dieser Technologie ist auf jeden Fall da“, findet Markus Kunkel, Geschäftsführer von 3e. „Außerdem sind wir dank des Elektrolyts auf der sicheren Seite, das Gefahrpotenzial ist geringer als bei anderen Speichertechnologien.“ Auch Anno Jordan von EMG Automation sieht das so. „Wir streben direkt ein nächstes Projekt an. Das Batteriemanagementsystem des aktuellen Demonstrators setzt sich noch aus diskreten Komponenten zusammen. Jetzt steht der nächste Entwicklungsschritt an, wir wollen die Integrationsdichte des Batteriemanagementsystems und damit auch die des Gesamtsystems erhöhen, dann ist das auch etwas für den kommerziellen Bereich.“

Der Demonstrator des Speichers soll seinen Aufbau verdeutlichen. Die blauen Kästen sind die Zellen, im Gefäß links befindet sich das Elektrolyt, das durch die Schläuche weitergeleitet wird.
Der Demonstrator des Speichers soll seinen Aufbau verdeutlichen. Die blauen Kästen sind die Zellen, im Gefäß links befindet sich das Elektrolyt, das durch die Schläuche weitergeleitet wird.

Ein weiteres Problem, das das Forscherteam noch lösen muss, ist die Optimierung des Elektrolytenmanagements. Denn für einen optimalen Ablauf darf die Elektrolyt-Konzentration in den Zellen nicht zu hoch sein. Danach wollen die Wissenschaftler den konkreten Anwendungsfall testen und den Zink-Luft-Speicher an die Photovoltaik-Anlage auf dem Steinfurter Campus der FH Münster anschließen und aufladen.

Das Folgeprojekt

Für das Folgeprojekt werden gerade die Weichen gestellt. Und es sieht gut aus: Das Team verspricht sich damit, neue Märkte zu erschließen und das Zelldesign in puncto höhere Leistungsdichte weiterzuentwickeln. Dabei sollen auch die Stadtwerke Steinfurt mit ins Boot kommen. „So können wir die Anforderungen für den praktischen Aufbau weiter spezifizieren und bekommen neue Möglichkeiten zum Testen, zum Beispiel im Windpark hier in Steinfurt“, sagt Löchte.

Quelle: UD/fo
 

Related Posts

0 Kommentare

Ihr Beitrag

Antwort auf:  Direkt auf das Thema antworten

Netiquette

Unsere Verantwortung/Mitgliedschaften

Logo
Serverlabel
The Global Compact
Englisch
Gold Community
Deutsches Netzwerk Wirtschaftsethik
Caring for Climate

© macondo publishing GmbH
Alle Rechte vorbehalten.

 
Lasche